Persistent susceptibility of Aedes aegypti to eugenol

  • Manjarres-Suarez, A. & Olivero-Verbel, J. Chemical control of Aedes aegypti: A historical perspective. Revista Costarricense de Salud Pública. 22(1), 68–75 (2013).


    Google Scholar
     

  • Mossa, A. T., Mohafrash, S. M. & Chandrasekaran, N. Safety of natural insecticides: Toxic effects on experimental animals. BioMed. Res. Int. https://doi.org/10.1155/2018/4308054 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamdan, H., Sofian-Azirun, M., Nazni, W. A. & Lee, H. L. Insecticide resistance development in Culex quinquefasciatus (Say), Aedes aegypti (L.) and Aedes albopictus (Skuse) larvae against malathion, permethrin and temephos. Trop. Biomed. 22(1), 45–52 (2005).

    PubMed 

    Google Scholar
     

  • Xu, Q., Liu, H., Zhang, L. & Liu, N. Resistance in the mosquito, Culex quinquefasciatus, and possible mechanisms for resistance. Pest Manage Sci. 61(11), 1096–1102 (2005).

    CAS 

    Google Scholar
     

  • Hidayati, H., Nazni, W. A., Lee, H. L. & Sofian-Azirun, M. Insecticide resistance development in Aedes aegypti upon selection pressure with malathion. Trop. Biomed. 28(2), 425–437 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Bedini, S. et al. Essential oils sensory quality and their bioactivity against the mosquito Aedes albopictus. Sci. Rep. 8(1), 1 (2018).

    ADS 

    Google Scholar
     

  • Vannette, R. L. & Fukami, T. Nectar microbes can reduce secondary metabolites in nectar and alter effects on nectar consumption by pollinators. Ecology 97(6), 1410–1419 (2016).

    PubMed 

    Google Scholar
     

  • Tetali, S. D. Terpenes and isoprenoids: A wealth of compounds for global use. Planta 249(1), 1–8 (2019).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Ryan, M. F. & Byrne, O. Plant-insect coevolution and inhibition of acetylcholineesterase. J. Chem. Ecol. 14, 1965e1975 (1988).


    Google Scholar
     

  • Bloomquist, J. R. et al. Mode of action of the plant-derived silphinenes on insect and mammalian GABAA receptor/chloride channel complex. Pestic Biochem. Physiol. 91(1), 17e23 (2008).


    Google Scholar
     

  • Khambay, B. P., Batty, D., Jewess, P. J., Bateman, G. L. & Hollomon, D. W. Mode of action and pesticidal activity of the natural product dunnione and of some analogues. Pest Manage Sci. 59(2), 174e182 (2003).


    Google Scholar
     

  • Enan, E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 130(3), 325–337 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Rattan, R. S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop. Prot. 29(9), 913–920 (2010).

    CAS 

    Google Scholar
     

  • Pugazhvendan, S. R., Ross, P. R. & Elumalai, K. 2012) Insecticidal and repellant activities of four indigenous medicinal plants against stored grain pest, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae. Asian Pac. J. Trop. Dis. 2, S16-20 (2012).


    Google Scholar
     

  • Obeng-Ofori, D. & Reichmuth, C. H. Bioactivity of eugenol, a major component of essential oil of Ocimum suave (Wild.) against four species of stored-product coleoptera. Int. J. Pest Manage. 43(1), 89–94 (1997).

    CAS 

    Google Scholar
     

  • Scalvenzi, L. et al. Larvicidal activity of Ocimum campechianum, Ocotea quixos and Piper aduncum essential oils against Aedes aegypti. Parasite 26, 23 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y., Lin, M., Jia, M., Hu, J. & Zhu, L. Chemical composition and larvicidal activity against Aedes mosquitoes of essential oils from Arisaema fargesii. Pest Manag Sci. https://doi.org/10.1002/ps.5542 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koch, T. et al. Temporary zinc oxide–eugenol cement: Eugenol quantity in dentin and bond strength of resin composite. Eur. J. Oral Sci. 121(4), 363–369 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Jaganathan, S. K. & Supriyanto, E. Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules 17(6), 6290–6304 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali, S. et al. Antimicrobial activities of Eugenol and Cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann. Clin. Microbiol. Antimicrob. 4(1), 20 (2005).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nam, H. & Kim, M. M. Eugenol with antioxidant activity inhibits MMP-9 related to metastasis in human fibrosarcoma cells. Food Chem. Toxicol. 55, 106–112 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Strode, C., Donegan, S., Garner, P., Enayati, A. A. & Hemingway, J. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes: Systematic review and meta-analysis. PLOS Med. 11(3), e1001619 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, B. et al. Cytochrome P450 genes expressed in the deltamethrin-susceptible and-resistant strains of Culex pipiens pallens. Pestic Biochem. Physiol. 75(1–2), 19–26 (2003).

    CAS 

    Google Scholar
     

  • Zhu, Y. C., Snodgrass, G. L. & Chen, M. S. Enhanced esterase gene expression and activity in a malathion-resistant strain of the tarnished plant bug, Lygus lineolaris. Insect Biochem. Mol. Bio. 34(11), 1175–1186 (2004).

    CAS 

    Google Scholar
     

  • Che-Mendoza, A., Penilla, R. P. & Rodríguez, D. A. Insecticide resistance and glutathione S-transferases in mosquitoes: A review. Afr. J. Biotechnol. 8(8) (2009).

  • Liu, N., Xu, Q., Zhu, F. & Zhang, L. E. Pyrethroid resistance in mosquitoes. Insect. Science 13(3), 159–166 (2006).


    Google Scholar
     

  • Bisset, J. A. et al. Temephos resistance and esterase activity in the mosquito Aedes aegypti in Havana, Cuba increased dramatically between 2006 and 2008. Med. Vet. Entomol. 25(3), 233–239 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Tak, J. H., Jovel, E. & Isman, M. B. Effects of rosemary, thyme and lemongrass oils and their major constituents on detoxifying enzyme activity and insecticidal activity in Trichoplusia ni. Pestic Biochem. Physiol. 140, 9–16 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Diniz, D. F. et al. Fitness cost in field and laboratory Aedes aegypti populations associated with resistance to the insecticide temephos. Parasit. Vectors 8(1), 1–5 (2015).


    Google Scholar
     

  • Promsiri, S., Naksathit, A., Kruatrachue, M. & Thavara, U. Evaluations of larvicidal activity of medicinal plant extracts to Aedes aegypti (Diptera: Culicidae) and other effects on a non-target fish. Insect Sci. 13(3), 179–188 (2006).


    Google Scholar
     

  • Morlan, H. B., Hayes, R. O. & Schoof, H. F. Methods for mass rearing of Aedes aegypti (L.). Public Health Rep. 78(8), 711 (1963).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ethiopian Public Health Institute (EPHI). Bacterial, Parasitic and Zoonotic Diseases Research Directorate Public Health Entomology Research Team (PHERT), Anopheles mosquito rearing and insectary handling guidelines 2017. https://www.ephi.gov.et/images/pictures/download2009/Anopheles-mosquito-rearing-and-insectary-handling-guideline.pdf

  • WHO. Who guidelines for laboratory and field testing of mosquito larvicides, who/cds/whopes/gcdpp/2005, 13 (2005)

  • Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18(2), 265–267 (1925).

    CAS 

    Google Scholar
     

  • Finney, D. J. Probit analysis. (ed. Hewlett, P. S.). Cambridge University Press, Cambridge, England. xv+ 333 pp (1971).

  • Safi, N. H. et al. Evidence of metabolic mechanisms playing a role in multiple insecticides resistance in Anopheles stephensi populations from Afghanistan. Malar J. 16(1), 100 (2017).

    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

    CAS 
    PubMed 

    Google Scholar
     

  • Navikaite-Snipaitiene, V. et al. Development of antioxidant food packaging materials containing eugenol for extending display life of fresh beef. Meat Sci. 145, 9–15 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Q., Zhou, M. & Wei, S. Progress on the antimicrobial activity research of clove oil and eugenol in the food antisepsis field. J. Food Sci. 83(6), 1476–1483 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh, V., Mukherjee, A. & Chandrasekaran, N. Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage. Colloids Surf., B 114, 392–397 (2014).

    CAS 

    Google Scholar
     

  • Baker, B. P. & Grant, J. A. Eugenol profile. https://ecommons.cornell.edu/bitstream/handle/1813/56125/eugenol-MRP-NYSIPM.pdf?sequence=1. Barceloux D. 2008. M (2018).

  • Sarma, R., Adhikari, K., Mahanta, S. & Khanikor, B. Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae). Sci. Rep. 9(1), 1–2 (2019).

    ADS 

    Google Scholar
     

  • Govindarajan, M., Rajeswary, M., Hoti, S. L., Bhattacharyya, A. & Benelli, G. Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol. Res. 115(2), 807–815 (2016).

    PubMed 

    Google Scholar
     

  • Brogdon, W. G. & Barber, A. M. Fenitrothion-deltamethrin cross-resistance conferred by esterases in Guatemalan Anopheles albimanus. Pestic Biochem. Physiol. 37(2), 130–139 (1990).

    CAS 

    Google Scholar
     

  • Fischer, I. U., Von Unruh, G. E. & Dengler, H. J. The metabolism of eugenol in man. Xenobiotica 20(2), 209–222 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Koodalingam, A., Mullainadhan, P. & Arumugam, M. Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito, Aedes aegypti (Diptera: Culicidae). Acta Trop. 118(1), 27–36 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Cao, C. W., Zhang, J., Gao, X. W., Liang, P. & Guo, H. L. Overexpression of carboxylesterase gene associated with organophosphorous insecticide resistance in cotton aphids, Aphis gossypii (Glover). Pestic Biochem. Physiol. 90(3), 175–180 (2008).

    CAS 

    Google Scholar
     

  • Hemingway, J., Hawkes, N. J., McCarroll, L. & Ranson, H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34(7), 653–665 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Devonshire, A. L. & Moores, G. D. A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pestic Biochem. Physiol. 18(2), 235–246 (1982).

    CAS 

    Google Scholar
     

  • Rompelberg, C. J. et al. Inhibition of rat, mouse, and human glutathione-s-transferase by eugenol and its oxidation products. Chem-Biol. Interact. 99(1–3), 85–97 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Qin, W., Huang, S., Li, C., Chen, S. & Peng, Z. Biological activity of the essential oil from the leaves of Piper sarmentosum Roxb.(Piperaceae) and its chemical constituents on Brontispa longissima (Gestro)(Coleoptera: Hispidae). Pestic Biochem. Physiol. 96(3), 132–139 (2010).

    CAS 

    Google Scholar
     

  • Muthusamy, R. & Shivakumar, M. S. Resistance selection and molecular mechanisms of cypermethrin resistance in red hairy caterpillar (Amsacta albistriga Walker). Pestic Biochem. Physiol. 117, 54–61 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Muthusamy, R., Vishnupriya, M. & Shivakumar, M. S. Biochemical mechanism of chlorantraniliprole resistance in Spodoptera litura (Fab) (Lepidoptera: Noctuidae). J. Asia-Pacific Entomol. 17(4), 865–869 (2014).

    CAS 

    Google Scholar
     

  • Rachokarn, S., Piyasaengthong, N. & Bullangpoti, V. Impact of botanical extracts derived from leaf extracts Melia azedarach L. (Meliaceae) and Amaranthus viridis L. (Amaranthaceae) on populations of Spodoptera exigua (Hübner)(Lepidoptera: Noctuidae) and detoxification enzyme activities. Commun. Agric. Appl. Biol. Sci. 73(3), 451–457 (2008).

    PubMed 

    Google Scholar
     

  • Tang, F., Zhang, X., Liu, Y., Gao, X. & Liu, N. In vitro inhibition of glutathione S-transferases by several insecticides and allelochemicals in two moth species. Int. J. Pest Manage. 60(1), 33–38 (2014).

    CAS 

    Google Scholar
     

  • Paeporn, P. et al. Biochemical detection of pyrethroid resistance mechanism in Aedes aegypti in Ratchaburi province, Thailand. Trop. Biomed. 21(2), 145–151 (2004).

    PubMed 

    Google Scholar
     

  • Bullangpoti, V., Wajnberg, E., Audant, P. & Feyereisen, R. Antifeedant activity of Jatropha gossypifolia and Melia azedarach senescent leaf extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use as synergists. Pest Manage Sci. 68(9), 1255–1264 (2012).

    CAS 

    Google Scholar
     

  • Koou, S. Y., Chong, C. S., Vythilingam, I., Ng, L. C. & Lee, C. Y. Pyrethroid resistance in Aedes aegypti larvae (Diptera: Culicidae) from Singapore. J. Med. Entomol. 51(1), 170–181 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Yougang, A. P. et al. Nationwide profiling of insecticide resistance in Aedes albopictus (Diptera: Culicidae) in Cameroon. PLoS ONE 15(6), e0234572 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nebert, D. W. et al. Genetic mechanisms controlling the induction of polysubstrate monooxygenase (P-450) activities. Ann. Rev. Pharmacol. Toxicol. 21(1), 431–462 (1981).

    CAS 

    Google Scholar
     

  • https://www.nature.com/articles/s41598-022-06302-8

    Open chat
    thank you for contacting us, for more information,
    please chat